52

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

REFERENCES

Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A., (2021). The role

of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants.

Biology (Basel), 10, 520. doi: 10.3390/biology10060520.

Ahmad, M., Zahir, Z. A., Asghar, H. N., & Asghar, M., (2011). Inducing salt tolerance in

mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria

containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol., 57,

578–589.

Ahmad, M., Zahir, Z., Nadeem, S., Nazli, F., Jamil, M., & Jamshaid, M., (2014). Physiological

response of mung bean to Rhizobium and Pseudomonas based biofertilizers under salinity

stress. Pak. J. Agric. Sci., 51, 555–562.

Bacilio, M., Moreno, M., & Bashan, Y., (2016). Mitigation of negative effects of progressive

soil salinity gradients by application of humic acids and inoculation with Pseudomonas

stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl. Soil Ecol., 107, 394–404.

Bal, H. B., Nayak, L., Das, S., & Adhya, T., (2013). Isolation of ACC deaminase producing

PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt

stress. Plant Soil, 366, 93–105.

Bano, A., & Fatima, M., (2009). Salt tolerance in Zea mays (L.) following inoculation with

Rhizobium and Pseudomonas. Biol. Fert. Soil, 45, 405–413.

Barassi, C. A., Ayrault, G., Creus, C. M., Sueldo, R. J., & Sobrero, M. T., (2006). Seed

inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci. Hort., 109, 8–14.

Bari, R., & Jones, J. D., (2009). Role of plant hormones in plant defense responses. Plant Mol.

Biol., 69, 473–488.

Chang, P., Gerhardt, K. E., Huang, X., Yu, X., Glick, B. R., Gerwing, P. D., & Greenberg, B.

M., (2014). Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-

impacted soil: Implications for phytoremediation of saline soils, Int. J. Phytoremediation,

16(11), 1133–1147. doi: 10.1080/15226514.2013.821447.

Chauhan, P. S., Lata, C., Tiwari, S., Chauhan, A. S., Mishra, S. K., Agrawal, L., Chakrabarty,

D., & Nautiyal, C. S., (2019). Transcriptional alterations reveal Bacillus amyloliquefaciens­

rice cooperation under salt stress. Sci. Rep., 9, 11912. https://doi.org/10.1038/

s41598-019-48309-8.

Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., & Niklińska, M., (2015).

Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting

stress. Ann. Microbiol., 65, 1627–1637.

Cohen, A. C., Bottini, R., Pontin, M., Berli, F. J., Moreno, D., Boccanlandro, H., Travaglia, C.

N., & Piccoli, P. N., (2015). Azospirillum brasilense ameliorates the response of Arabidopsis

thaliana to drought mainly via enhancement of ABA levels. Physiol. Plant., 153, 79–90.

Damodaran, T., Sah, V., Rai, R. B., Sharma, D. K., Mishra, V. K., Jha, S. K., & Kannan, R.,

(2013). Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection

and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth

vigor in tomato under sodic environment. Afr. J. Microbiol. Res., 7, 5082–5089.

Egamberdieva, D., Jabborova, D., & Hashem, A., (2015). Pseudomonas induces salinity

tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the

modulation of indole-3-acetic acid. Saudi J. Soil. Sci., 22, 773–779.